..|...|.. cisco

# SGCP Les défis techniques de l'internet des objets

Faycal HADJ TSA – Cisco France

Avril 2014



### Relation entre IoE/IoT et M2M



#### Promesses de l'IdO



Cisco IBSG projections, UN Economic & Social Affairs http://www.un.org/esa/population/publications/longrange2/WorldPop2300final.pdf © 2013-2014 Cisco and/or its affiliates. All rights reserved.

### Changement de paradigm



### Construire un éco-systeme



#### Approche Cisco de l'IdO

#### "Customer-In" Approach

- Understanding of key business care about and pain points
- Relevance to LOB leaders / CXOs

#### Products/Technologies

- Best-in-class ruggedized products
- Smart solutions for verticals
- IoT architectures

#### **Strategic Partnerships**

- Industry partners
- Vertical software / service partners
- · Service providers



### Les challenges de l'agrégation des données 1.1 Billion 500 Gigabytes Data points generated by sensors daily Data generated by an offshore oil rig weekly **1000** Gigabytes 10,000 Gigabytes Data generated by an oil refinery daily Data generated by a jet engine every 30 minutes 2.5 Billion Gigabytes Data generated worldwide daily 90% of the world's data Has been created in the last 2 years!

### Autres Challenges à l'adoption de l'IdO

#### **Challenges Business**

- Must prove sensors have business value
- IoT applications must be profitable

#### **Challenges Politiques**

- Data security, data privacy issues
- Legal challenges for poor automated decisions

#### **Challenges technologiques**

- Developing energy sources for millions or billions of sensors
- Establishing a common set of standards
- •Technologies must evolve for free flow of data between sensors and networks
- Transition to IPv6
- Enhanced software apps will be needed

# Évolution d'architecture des réseaux IdO



# Architecture de FOG computing pour l'Ido

Data Volume, Variety & Velocity, Security, Resiliency, Latency



### Protocoles IPv6 de l'IdO

- Various protocols applied to IoT networks
- Relevant Protocols for different layers
  - Link Layer (eg., 802.15.4, PLC)
  - Adaption Layer (6LowPAN)
  - Routing (eg., RPL)
  - Messaging (eg., CoAP)



-ayer

Network

MAC

PH√

Functionality

unctionality

App.

Network Layer

Comm.

# Comment le réseau doit évoluer pour supporter l'IdO !

|                                  | Reseau IT                                                                               |   | Reseau IdO                                                                                                                                                                                          |  |  |
|----------------------------------|-----------------------------------------------------------------------------------------|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| What the network does            | Delivers information and applications                                                   | + | Makes intelligent decisions                                                                                                                                                                         |  |  |
| Technology Care<br>Abouts        | <ul> <li>High availability</li> <li>Reliability</li> <li>Speed</li> <li>IPv4</li> </ul> | ÷ | <ul> <li>Massively scalable and elastic</li> <li>Distributed</li> <li>Programmable</li> <li>IPv6 Enabled</li> <li>Bridges M2M infrastructure, traditional networks, cloud-based services</li> </ul> |  |  |
| Critical network characteristics | Compatible with proprietary,<br>industry-specific, closed loop<br>solutions             | + | <ul> <li>Open and flexible</li> <li>Mutually independent network – Operates without impacting other components, services or features</li> </ul>                                                     |  |  |
| What the network connects        | People to: Applications,<br>services, people                                            | + | <ul> <li>Machines To: Machines (M2M), people/humans (M2H)</li> <li>Objects/Things to: Machines, people</li> </ul>                                                                                   |  |  |

Ne pas travailler de manière incrémentale par rapport aux réseaux d'aujourd'hui ....



# Thank you.

# 

### RPL Configuration at DODAG Root (Field Area Router)

interface Ethernet2/3 !Interface to WAN side ipv6 address 2001:420:7bf:5f::99/64

ipv6 dhcp relay destination 2001:420:7bf:5f::100! Upstream towards DHCP
server

ipv6 dhcp relay client-interface

! Downstream towards meters in NAN

# Meter Configuration via CG-NIMS (Device Presertion View)



#### << Back

#### 00173BAB003C0D00

| Show on Map                      |                                    |  |
|----------------------------------|------------------------------------|--|
| Device Info                      |                                    |  |
| Туре:                            | Cisco Connected Grid Mesh Endpoint |  |
| Status:                          | up                                 |  |
| IP Address:                      | 2001:dead:beef.cafe:aaaa:0:0:4     |  |
| Map Location:                    | 39.0, -90.0                        |  |
| Last Heard:                      | 05/30 01:49                        |  |
| Mesh Link Transmit Speed:        | 395.89 bits/sec                    |  |
| Mesh Link Transmit Packet Drops: | 0 drops/sec                        |  |
| Mesh Link Receive Speed:         | 822.83 bits/sec                    |  |
|                                  |                                    |  |

#### NETWORK INTERFACES

| Interface | IP Address                                                   | Physical Address | Tx Rate<br>(bits/sec) | Tx Drops<br>(drops/sec) | Rx Rate<br>(bits/sec) |
|-----------|--------------------------------------------------------------|------------------|-----------------------|-------------------------|-----------------------|
| lo        | 0:0:0:0:0:0:1                                                |                  | 0                     |                         | 0                     |
| lowpan    | 2001:dead:beef:cafe:aaaa;0:0:4<br>fe80:0:0:0:217:3bab;3c:d00 | 00173bab003c0d00 | 395.89                |                         | 822.83                |
| ррр       | fe80:0:0:0:0:0:0:1                                           | 00173bab003c0d00 | 0                     |                         | 0                     |

#### NETWORK ROUTES

| Destination | Next Hop IP Address        | Next Hop Element ID | Interface | Hops | Path Cost | Link Cost | RSSI | Reverse RS |
|-------------|----------------------------|---------------------|-----------|------|-----------|-----------|------|------------|
| default     | fe80:0:0:0:217:3bab:3c:d01 | 00173BAB003C0D01    | lowpan    |      |           |           |      |            |
|             |                            |                     |           |      |           |           |      |            |

#### PATH TO NMS

| Hops         | IP Address                     | Element ID      | Status | Last Heard  |
|--------------|--------------------------------|-----------------|--------|-------------|
| this element | 2001:dead:beef:cafe:aaaa:0:0:4 | 00173BAB003C0   | up     | 05/30 01:49 |
| 1 hop        | 2001:dead:beef:cafe:aaaa:0:0:6 | 00173BAB003C0   | up     | 05/30 01:48 |
| 2 Hops       | 10.22.61.201                   | cgmesh-calabria | up     | 05/30 01:35 |

# Meter Configuration via CG-NMS (Mon View)



